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In the paper dual integral equation6 and dual series of a general type are 
ooneidered, widely used for the solution to boundary value problems In the 
theory of elasticity, hydrodynamics, electrostatics etc., under mixed bound- 
ary conditions. A method of solution to dual equatlons and series 1s pro- 
posed which Is based on their reduction to Yredholm integral equations of 
the second kind with respect to an orthogonallzti kernei. For this Purpose 
linear integral equations of the Volterra type, being a continual analog of 
the orthogonallzatlon process, are u-sd. The applloatlon of this msthod is 
Illustrated by the plane contact probLem for a wedge. 

1. The method of dual integral equations and dual series Is one of the 

most eifectlve means to solve boundary value problems with mixed boundary 

conditions. Dual equations and-lee are usually applied in those cases, 

when the solution to the boundary value problem Is sought in the form of sn 

expanelon of a certain syatem of functions , and when mixed boundary condl- 

tlona are used for the determination of the coefficients of the expansion. 

As a result OS application to the solution of different operators on dlferent 

parts OS the boundary, dual equations or dual series are obtained. In the 

case OS real 
a, 

expenelone they may be represented In the following general form: 

s [I+ h (EN 9 (El ZJ (E, q> WE) = gl (q) (-=<u<v<c) 
-00 

co @*I) 

--oD 

Here all functions except S&J are known; T(E) 18 a rpectral @lstributlon 

Sum&ion or the oorresponding expwlon. For txpaneion in integrals 7 (E) 

Is contlnuoue, for expanelon in series it Is represented ae a step function 

with a countable number OS jumps. 

522 
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First, apparently, the problem of dual Integral equations was formulated 
b Weber cl] In 1813 and solved (fm a very special case) by Beltraml c2] in 

ii8 1 1. The second birth of dual equations occurred after Tltchmugh 13) and 
Busbridge 143 on the basis of the theory of Mellln transforms, gave the solu- 
tlon by quadraturea to equations with Bessel kernels 

00 8 

s 
I- (E) J, ml) 4J (E) dE = a b-l) (O<rl <i) 

0 (~92) co 

c J, m-l) 9 (E) dE = a (11) (1 <v-c=) 
; 

for the case r (f) = f”, 8% (V) c 0. Later, several papers appeared, in which 
by means of various methods, dual equations of such kind were studled in 
considerable detail (among them for ga f 0). Results of a more general 
character were obtained In Investigation, dealing with dual equations with 
Bessel kernels for arbitrary r(t), when, in general, one 1s not successful 
to find a solution by quadratures. Thus, ln paper E53 the solution of dual 
equations reduces 
equations, and in I! 

o the solution of an Infinite rystem of linear algebraic 
6 to 91 they are reduced by varloua method6 to Fred&olm 

integral equations of the second kind. The method of Weiner-Hop+Fok and 
variational method of solving dual equations are applied by Noble (8 to lC]. 
Some special cases of r(C) are coneldered In (11 and 123. 

In separate papers dual equations with other kernels are examined (4) In 
c 131 -wleh akernel In the form of a Legendre function with a complex power 
(the kernel of the Mehler-Fok integral transform), In Cl43 - with a kernelin 
the form of a complex cyllnirlcal function of the first and second klnd (kernel 
of Weber transform). The’ tivestlgatlon of dual.equatlons with kernels of 
Fourier transforms may be found ln the monograph [15]. Dual series for dlf- 
ferent functions (trigonometric, cylindrical, Legendre functions, Jacobi 
functions) were Investigated in papers [16 to 211 and others. 

In the preserit paper basic consideration Is given to dual integral equa- 
tions and dual series of the type (1.1). It will be shown that them exist 
very general methods of reduction of dual equations (1.1) to a Oingle inte- 
gral equation, defined on the whole Interval (Q, b) and allowing InversIon. 
This method Is connected with the continual orthogonallaatlon of the lnte- 
grand functions In dual equations and Its ldea Is quite clore to the known 
method of aolutlon to the Inverse Sturm-Li’ouvllle problem developed In the 
fundamental lnveetlgatlons 122 and 231. Since thepaper purruer primarLly 
applied goals, the formal side of the general method will be umlnly exposed 
here, while the question of all necessary conditions and possible restrlc- 
tlons may be determlned by Investigation of speclflo equations with these or 
other kernels. 

9. Setting 14-h (8 = P2 (E), P (!i.)$ (E) = f (8, we wn-trlze dual 
equations (l.l), reducing them to the form convenient for further operations 

03 

1?, 
1 P (E) f (E) u (Es I.0 (TX (%) = g1 (tl) (a<l)<c) 

00 

1 P-’ (%I f(E) u (E, rl) c&(E) = g2 (rl) 

(2.1) 

@<71 <b) 
--oo 

For the solution of Equations (2.1) we attempt to orthogonalize the funo- 
t Ions pk)u(s, rl) and P-‘(!)u(<, tl) , such that the result of orthcgonall- 

zatlon will lead to one and the same kernel, which correrponds to the spmlml 

l ) Particular dual intrgral equations with kernela, depending upon dl_ffer- 
ence in_ arguments are studied in the papers of F.D. Oakhov,. I.Tr. Ookhberg, 
M.6. ICreln, I.M. Rapoport, fu.1. Chetikesov and otherr. 
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distribution function ~(5) 

It ie hewn that with the ald of linear triangular transform one may 
orthogonalize any system of linearly independent functions. A continual 
analog of this process 1s represented by the linear Integral transformation 
of the Volterra type. In the general case the problem of constructlon cf 
Integral transformation of a given function of two variables Into an ortho- 
gonai kernel, apparently, as vet, has no solution. The particular case of 
orthogonalitatlon of the function cos G with resoect to measures x and 
p(X) cae investigated by Oel’fan and Levltan in paper [22], dealing with the 
restoration of a second order dlfferentlal operator from its spaectral char- 
acterlatlce. 

We conslder at first the case when the kernel of Equation (2.1) Is ortho- 

gonal, I.e. a continuous function u(<, q) and nondecreaslng functions T(!), 

u(x) are euch that Formulas 

W) = ~f(4WWz). f(z) = 1 F(E)u(E,z)dz(E) (2.2) 
a -cQ 

e8tabllsh a mutually Inverse Isometric mapping of spaces J!Q,~ of all 

o-measurable functions f(x) (c s x < b) having o-Integrable square 

(1 

on the space LzrT of T-measureable functions fl (8 C-- ~<E<4 
havihg r-square integrable on the whole axis. We suppose also that p(F) Is 

continuous and P(5), gl(n) and o*(n) are sufficiently regular In order 

that the Integrals considered below exist at least in the sense of general- 

ized functions. 

Relation (2.2) determines Integral transforms with finite or Infinite 
llmlts (I.e. expansions by certain systems of functions), the applications 

of which for the solution of boundary v&lue problems leads to the dual equa- 

tions (2.1). 

Ualng formulas obtained from (2.2) by changing u(S, X) for cp(c, X) we 

construct a kernel which reflects the spaces La,, and L,,, one on another, 

and Is associated with ~(5, x) by relation 

where dw, 7) (TJ < x) Is a certain 
c.4 

unknown continuous function. We can 

conrlder Expresrlon (2.3) as a Volterra equation relative to u(?, x) and 
Ifr rolutlon, I.e. function u(;, x) may be represented in the form 

a(5.T)=p’(F)[~(S,2)+TH(~,~)(P(l,~)d~(9)] (2.4) 

Continuous functions a(~, 7) and H(:, rl) (V < W) are called orthogonal- 
iced kernels. We consider now the Integral 

(2.5) 
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If p (i)u (c, 11) E Lg.:, when 11, (5, 11) E Lz,a. Introducing into consld- 

eratlon generalized functions, we can extend U- and cp-transforms, realized 

by Equations (2.2) also to functions not belonging to Lz,, and L a.r i for 

example, functions Integrable (by corresondlng measure) and of bounded varl- 

atlon ,on any finite interval. Thus, In this case when p (E)u (E, q) EL2,T, 

Ho ( E, q) may be considered aa a generalized function, the rp-transform of 

which has the form h 

Comparing (2.4) iith (2.6), we obtain 

where a(x - q) Is a delta function; a’(q) In the general case Is understood 

as a generalized function. On thebother hand, frbm (2.5) and (2.2) we have 

(2.S) 

Hence 
‘p 6, x1 = P-’ (8 b (E, L + iI{ (7, 2) u 6 V) d3 (rl)] (2.9) 

Substituting now into (2.5) the functfion (P(F, x), from (2.3) we get 
.X 

As a consequence of (2.2) 
a3 

1 
u (E, 2) u 6 rl) & (E) = D @I)]--’ 6 (z - q) 

therefore, intrzucing the new function 

y (79 5) = 1 h (8 ZJ 6 11) ZJ 6 z) & (E) 
-CO 

(2.12) 

(2.13) 

from (2,lO) for values of x > TJ of Interest to us, we obtain 
r 

The kernel ~(7, tll) of the integral equation (2.14) may be expressed by 

means of the orthogonallzatlon kernel ~(3, V) . 
and (2.5) In (2.13) (when x > T ), we find 

CQ 

Ualng expressions (2.4 

rl) [v (Es 4 + 

6 (x - rl) = 110 (xv 7) + 

-18 (x-q) (2 + \ H (XV rll) Ho ($9 Y) d5 (tl*) - Is’ (?-I)1 

1 

.lS) 
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Taking into consideration (2.7), we may now write 

(77 - rlr) + H (79 171)) do hl) (2.W 

(2.17) 

It followe from (2.17) that Y(n, x) is continuous, so long a8 the kernel 

g(x, TI) Is continuous. Thue, for every fixed x , Equation (2.14) la a 

linear Redholm integral equation of the second kind with continuous, aym- 

metrical kernel Y(tl, x) . This equation, just aa the mnllnear Integral equation 
(2.17) wlth respect to the orthogonalizatlon kernel ~(x, r,) la analogoua 

to the integral equation studied In detail In (22 and 231. in our case these 

equations, although being of a rather more general aharaater, are eeeentlally 

little different from aonelderatlons In t22 and 231, therefore, ueing the 

close analogy between them, It Is not dlfflcSlt to prove solvability of Equa- 

tion (2.14). 

We shall prove first that If f (q) E L,,, IS some finite function and 

~(I)=Sbf($)a(5,Il)do(rl) 
a 

is Its u-transform, then from the equality 
03 

1 
ma (E) P’ (E) & (%I = 0 (2.18) 

It necessarily follows that almost everywhere O(q) E 0, I.e. y(q) * 0 . We 

have 

p(E)@(%)=$f(l)d”(‘1) iHa(‘tl19)9(E1’11)d”(11) = 
a a 

= f(P (%, ‘-11) [I (rid + i H h ~1) f h) do (9-j do (tll) 
a n1 

(2.19) 

[ f(qd+~ H(q,rl1)f(ll)do(rl)]EL,,a 
‘11 

then, using Parstival’e equality for (p-tranisform, realized by Equation (2.2) 

3 F2 (E) d% (E) = i f” (3) da (3) 
-00 a 

we flnd 

3 p2 (%) (D2 (%) dz (%) = j [t (Q) + j if (11, rll) f (‘-I) d6 (‘I)]1 da h) (2e20) 
-CO a n1 

Thus, on aaaount of (2.18) 

f(rl~)-t5H(9.tll)f(~)d~h)=0 (2.21) 

nr 
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Equ4tion (2.21) represents a regular (t(q) is finite) Volterra equation 
relative to f(71, ) , which may have only the trivial solution $(TJ~ ) I 0 , 
St follows that a(b) m 0 , 

To prove that the only solution is Equntion (2.14) for every particular 
x , it is sufficient that the homogeneoua equrtlon 

1c(~~)+~Y(rl*rl,)Ilr(rl)~~(rl)=o (2.22) 
a 

has only a t@vlal solution. We euppoae that there exlrts a function 
$ (51, ) / 0 0atiefNng Equation (2.22). Substituting 1n(2.22), instead of 
f(rl, r(1) its value from (2.13) and changing the order of integration, we get 

cm x 

(2.23) 

where $ L9 a u-transGm of function qX(q) . Multiplying the left and 
right-hand eldee of (2.25) by tl(~,) and Intee-atlng with measure O(I)& ) 
from a to b , we obtain 

03 n 

1 Pa (5) ma (6) d-c (%) = 0 (2.26) 

Hence, by virtue of (z8) and of its consequence, it muat be t(q) c 0 B 
which contradicts our aasumptlon. Thus Equation (2.22) has only the trivial 
solution, consequently, Integral equation (2.14) at3 a unique solution 

Having determined x(x, Q) from Equation (2.14) by home well-known 
method, using Equation (2.3), we find the functlon cp(<, x) and then from 
(2.5) we shall find the second orthogonalizatlon kernel &(r, r() . 

Thus, Integral operators related to kernels K(w, 7) and 1(x, q) allow 

one to realize the orthogonallzatlon of funotlone p(q)u(f, rl) and @(I&(~,TJ~ 
whereby, what is very Important, integration is carried out in 1lmLta of each 
of the intervals, on which dual equation8 (2.1) are apeclfled. This ortho- 

gonalization gives the poselbllity to reduce dual equations to a eingle lnte- 
gral equation, the solution of which at once follows from the lnveralon for- 
mula. Multlplylng both sidea of the first equation (2.1) by 

and both sides of the second by 170 (x, TI) and integrating with mencure o(rl) 
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from 0 to b, we obtain 

(2.27) 

Inverting (2.27), we find the solution of dual Integral equations (2.1) 

In the form 

f(6) =SC'WiJCW5~~) + ~GWNJ)d5(~) (2.28) 

3. In the case lf dual series 
c 

; P,f,u,h)L=gl(v) (a < q < c) 
n=O 

mz: Pn-lfn% (rl) 5% = g2 (7) 

(3.4) 

(c < rl < b) 
n=o 

the method of solution Is not different from that given in the previous Sec- 
As was already noted series 

iizz*of dual equations (2.lj 
.1) may be considered, as a particular 

when is represented by step functions. 
series (3.1) In the form 

Here 

and x(x, q) Is a solution to the Integral equation (2.14) for 

y(rl, 2)= 5 [Pn2-11U~(Z)U~(rl)~n 
??=O 

(3.3) 

For this, obviously, It is supposed that u,(x) Is a system of fLWtlOnS, 
ortho onal with weight a'(x) and a normalized value of 
(a, 87 * 

T, on the Interval 

4. The proposed method may be used to solve also systems of dual integral 

equations. Let, for example, the given system be 
00 

’ 
s 

p (E) rfl (8 + %f2 (EN 22 (ET 11) & (E) = gl (rl) 
-co 
03 (a<rl<c) (4.W 

\ : P 65) [fl (8 + Plf2 (81 u (E9 J-t) d-r (E) = g3 h) 

-co 
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aJ 

5 p-l (E) tj1 (E) + R?ja (EN z-5 (5171) f”k (5) = Pz (9) 
-00 

co Ic <I1 <a) (4.1.2) 

5 p-’ (E) Efl (El) + PJ2 WI u (EY rl) dr cE> = g4 (rl) 

Wulzplying the 1ePt and right-hand sides ot (4.1.1) by &(x# q) and 

(4.1.2) by &(xf (1) and fntegrating with respect to measure o(q) , we get 

We denote 03 

b<z<c) (4.2-i) 

b<Z<W (4.2.2) 

then from (4.2.1) we have 

transforming (4.3), we Eland the solution to the system (4.1) 

(4.5) 

5, The result6 obtained above relate to dual Integral equationa with 

orthogonal kernels, for which Equations (2.2) are valid, ensuring the exlst- 



ence 

tion 
gral 

of integral equatfon (2.14) for the determination of the orthogonaliza- 

kernel. However, carryfng out the orthogonalization and obtaining inte- 

equation of the type (2.14) Is possible also In the more general case, 

namely for all those equations, which on the Interval (a, a) allow Inversion. 

For Equatlons (l.l), and also, for example, for dual equations of a more 

where (L) is a certain contour in the complex plane, the solution by the 

proposed method may be obtained in those cases, when for Equation 

there Is known the Inversion formula 

Relations (5.2) and (5.3) hold for Integral transforms with nonsymmetrical 

kernels and In particular for expansions Into eigenfunctions of nonself- 

adjoint differential operators and also in certain special cases. For exam- 

ple, it Is known [33 that for certain conditions Integral equations with a 

kernel, depending upon product arguments 
co 

s F (5) h (Ez) dE = f (z:) (O\ca:C~) (54 
0 

have a solution 

(5.5) 

Here &(l - s) denotes a Mellln transform of the function Is,(r) 

Analogous relation8 are easily established alSO for the cWatiOns given 

along the whole axis, with kernels depending on the difference or sum of the 

arguments 

7 P(E) k&t WE :--. f(x) (5.7) 
- TO 

The inverse equation has the form 

-03 -2xJ 

Here kl*(p) Is the Fourier transform Of the function kl(x) + 
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SubstItutlng (5.3) Into (5.2) and conversely, we find 

o7-l) [ u(E* 0 (L WW) = W1-Q), 
(L) 

z’ (E) s u (E, q) v (El, r7) da h) = 6 (E - 51) (5*9) 

Orthogonalizlng kernels ~(x,.n) and ,4(x, n) are found from the 

P-'(5)9(1,5)=1L(E,a)+5K(s,tl)o(E,q)d~(~) 
a 

relations 

(5.10) 

(5.11) 

Here, as above, P (E) =vi +h (E). Multiplying (5.11) by ~(5 

Integrating with respect to ~(5) along the contour (L) , we find 
r(,) and 

s 
' p(~)Q,(~,z)v(~,771)dZ(~)= s$) + H(QV z) @<nl) (5.12) 

CL) 0 (x> Sl) 

using now (5.10), we find for x > n1 
x 

where 

(5.13) 
a 

6. In individual cases one may be able to realize orthogonallzation and 
to determine the orthogonallzatlon kernels without the solution of Integral 
equations (2.14) or (5.13). If proceeding from some consideration, one may 
predict the form of function cp 5, x , t 1 then kernel x,(x, 7) Is determined 
by Equation 

Ko(.r, rl) = 
s 
P-'(!J'P(e, z)z(L q)dt(f) (6.1) 

UJ 

obtained by means of the Inversion of (5.10) and the kernel H,(x, n) by 
Equation 

’ JT,tz, rl) = 
s 
PG)O(F, 2) v(4. tl)dT (5) (6.2) 

(12) 
Analogous relatlons occur for kernels K~(x, q) and &(x, q) in the case 

of dual equations (2.1). 

7. As an illustration, we consider the plane contact problem In the 
theory of elasticity for an Infinite wedge in polar coordinates. Let the 
end of the wedge, the angle of which equals 2a , on section 0 c F < 1 be 
pressed without friction by synunetrlcal rigid stamps, so that boundary con- 
ditions for the problem have the following form: 

2'(r, +a) = g(p) (O<p<1) 
oe (r, +a) = 0 (1 <r-C=) (7.1) 

rT,g (r, It-U) = 0 (O< r<=) 

As is known, the problemsof a wedge are successfully solved by the help 
of Mellln transforms. 
or* oo* zre, 

Introducing Mellin transforms or*,a,*,zr$ for stresses 
and supposing that the stresses are of order r-c*(sl> 1) for r-m 

and r-'* (ES < 1) for r - 0 , from the equations of equlllbrlum and the 
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condition of contlnulty one may.obtaln ordinary differential equations of 
the fourth order with respect to a,*, the solution of which has the form [Z!‘i! 

a&* = A ccs (P i- 2) 8 + B cos (F - I) 6 -I- C sin (p _t 1) 8 + D sin @ - I)0 (7.2) 

where 
1 

c+=--- 
( 

cc*” 
r p p-_1-oe* ? i 

i 
t l = --..--o *’ 

TOI p-l 0 (7.3) 

Here P 0% - i<R@p<al- 2) la a complex parameter in the Mellin 
transform, From sy~etry conditfons of the stresses relative to t) I 0 it 
follows that CID = 0 , Using (7.3) and the last condition in (7.1), we 
find In addition 

B(p)=_-A(p) (P+l)sin(F+I)x 
(p - 1) sin (p - 1) a (7.4) 

Since (for generallzed plane state of stress) 
M 8 8 

U = f * 
c 

(br - Vcs,) drT 
f 

(b~--vVB,)de- ‘u&l S 
p & 0 

(7.5) 

where v is Poisson’s coefficient, WIT using (7.2) and (7.3) we obtain, 
after conversion of transforms (IO* 6,’ in accordance with (7.1)) the 
following dual integral equation with respect to the function 4,(p) 

&(p) = A (P) fo (P) fr b), fo (P) = 
2[(p2fp+V-I)sln(p+I)a]% - 

p” - 1 
‘It (7-g) 

cos(p-_)a 1 
Here (L) is a vertical straight line inside the strip (E=- 1 < Re PC&,--1). 
For solution of dual equatlons (7.6) one should find the orthogonallzatfon 

kernel Kfr, r) from Equation 

y (5, ~1 Jr \ K (x, 71) Y (I”, rl) drl + K (x, r) zrz o (7-7) . 

After the determination of kernel x(x, 
Equations (7.6) is written in the form 

r) from (7.7) the Solution of dual 

AI (p) = - Ep fp) 5 [zp-l + f K (-x, 4 9-l d&j [w (4 f { K (2,~) glP3 dr] dx V-9) 
0 0 

and the stresses may be determlned with the aid of the Mellfn fnVe%WiQn 
formulae from (7.2) and (7.3). 

1. 

2. 

3. 
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