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In the paper dual integral equations and dual series of a general type are
considered, widely used for the solution to boundary value problems in the
theory of elasticity, hydrodynamics, electrostatics etc., under mixed bound-
ary conditions. A method of solution to dual equations and series is pro-
posed which is based on their reduction to ¥redholm integral equations of
the second kind with respect to an orthogonalizing kernel. For this purpose
linear integral equations of the Volterra type, being a continual analog of
the orthogonalization process, are ured. The application of this method is
1llustrated by the plane contact prob.em for a wedge.

1. The method of dual integral equations and dual series 1s one of the
most effective means to solve boundary value problems with mixed boundary
conditions. Dual equations and series are usually applied in those cases,
when the solution to the boundary value problem is sought in the form of an
expansion of 8 certaln system of functions, and when mlxed boundary condl-
tions are used for the determination of the coefficlents of the expansion.
As a result of application to the solution of different operators on diferent
parts of the boundary, dual equations or dual series are obtained. In the

case of real expansions they may be represented in the following general form:

(ttr@e@s@ @ =am (—=<a<n<o
e (1.1)
Ve@u@ ndr@—am  c<n<i<o

Here all functions except WV (t) are known; (%) is a spectral d¢istribution
function of the corresponding expansion. For expansion in integrals ()
is continuous, for expansion in series 1t is represented as a step function
with a countable number of Jjumps.
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Dual integral equations and dusl series in problems of mechanios 323

First, apparently, the problem of dual integral equations was formulated
by Weber [1] in 1873 and solved (for a very special case) by Beltrami [2] in
1881. The second birth of dual equations occurred after Titchmarsh [3] and
Busbridge (4] on the basis of the theory of Mellin tranaforms, gave the solu-
tion by quadratures to equations with Bessel kernels

o0

\revene@a=nm  0<n<y
’ )

J,(EM) $ (8) dE = ga(m) (1 < < o0)

\/’)8

<

for the case r(f) = &% g, (N) = 0. Later, several papers appesred, in which
by means of various methods, dual equations of such kind were studied in
considerable detail (among them for g = 0). Results of a more general
character were obtained in investigation, dealing with dual equations with
Bessel kernels for arbitrary r(z), when, in general, one is not successful
to find a solution by quadratures. Thus, in paper [5] the solution of dual
equations reduces fo the solution of an infinite system of linear algedraic
equations, and in L6 to Y] they are reduced by various methods to Fredholm
integral equations of the second kind. The method of Weiner-Hopf-Fok and
variational method of solving dual equations are applied by Noble [8 to 1C].
Some special cases of r(;) are considered in [11 and 12].

In separate papers dual equations with other kernels are examined (*) in
[13] — with akernel in the form of a Legendre function with a complex power
(the kernel of the Mehler-Pok integral transform), in (14] - with a kernel in
the form of a complex cylindrical function of the first and second kind (xernel
of Weber transform). The investigation of dual equations with kernels of
Fourier transforms may be found in the monograph [15]. Dual series for 4if-
ferent functions (trigonometric, cylindrical, Legendre functions, Jacobi
functions) were investigated in papers [16 to 21] and others.

In the present paper basic consideration is given to dual integral equa-
tions and dual serles of the type (1.1). It will be shown that there exist
very general methods of reduction of dual equations (1.1) to a single inte-
gral equation, defined on the whole interval (g, ») and allowing inversion.
This method is connected with the continual orthogonalization of the inte-
grand functions in dual equations and its idea is quite close to the known
method of solution to the inverse Sturm~Liouville problem developed in the
fundamental investigations [22 and 23]. Since the paper pursues primarily
applied goals, the formal side of the general method will be mainly exposed
here, while the question of all necessary conditions and possible restric-
ttons may be determined by investigation of specific equations with these or
other kernels,

2. Setting 14+ A4 (E)=p* (), p (B (E) =/ (E), we symmetrize dual
equations (1.1), reducing them to the form convenlent for further operations

\e®/®uEnar@=am  @<n<a
Py (2.1)

'

Vol @ /@ uE mMdT®) =g c<n<d)
-00
For the solution of Equations (2.1) we attempt to orthogonalize the func-
tions p(z)u(g, n) and p-3(z)u(g, n) , such that the result of orthcgonali-
zation will lead to one and the same kernel, which corresponds to the spectral

#) Particular dual integral equations with kernels, depending upon differ-
ence in arguments are stuaied in the papers of F.D. Gakhov, I.Ts. Gokhberg,
M.G. Krein, I.M. Rapoport, Iu.I. Cherkesov and others.
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distribution function r(g)

it is known that with the aild of linear triangular transform one may
orthogonalize any system of linearly independent functions. A continual
analog of thils process 1s represented by the linear integral transformation
of the Volterra type. In the general case the problem of construction cf
integral transformation of a given function of two variables into an ortho-
gonal Kernel, apparently, as yet, has no golution. The particular case of
orthogonaligation of the function cos /Xx with respect to measures x and
p(x) was investigated by Gel'fan and Levitan in paper [22], dealing with the
restoration of a second order differential operator from its spaectral char-
acteristics.

We consider at first the case when the kernel of Equation (2.1) is ortho-
gonal, i.e. a continuous function u(¢, n) and nondecreasing functions (£},
o(x) are such that Formulas

b oo
c]
FO={/@utnds@), /@)= {FRutadE @2
a —-00
eatablish a mutually inverse isometric mapping of spaces .an of all

o-measurable functions f(x) (g s x < ») having o-integrable square
b

\17(2) [ do (2) < oo

@
on the space L,. of r-measureable functions £ (§) (— oo < § < o0),
havihg t-square integrable on the whole axis. We suppose also that p(g) is
continuous and p(e), @,(n) and g,(n) are sufficiently regular in order
that the integrals considered below exist at least in the sense of general-
ized functions.

Relation (2.2) determines integral transforms with finite or infinite
1imits (1.e. expansions by certain systems of functlons), the applications
of which for the solution of boundary value problems leads to the dual equa-
tions (2.1).

Using formulas obtained from (2.2) by changing u(Z, x) for o2, x) we
construct a kernel which reflects the spaces Lzm and L, . one on another,

and 1s associated with u(g, x) by relation
x

0t 2)=p(® 2 o) + K@ nuE wdsm) | (2.3)
where X(x, n) (n < x) is a certain uA;nown continuous function. We can

consider Expression (2.3) as a Volterra equation relative to u(f, x) and

its solution, i.e. function u(e, x) may be represented in the form
x

u (G ) =p 8)[9E =) + | (@) 9 (&, m) ds (n)] (2.4)

a
Continuous functions x(x, n) and #(x, n) {n < x) are called orthogonal-
1zed kernels. We consider now the integral

oo

Hy@@,m) = \p(®zEneE2dr @) (2.5)
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1t p(3u (§, M) & L, ., when Hy(z, 1) & Lys. Introducing into consid-
eration generalized functions, we can extend y- and g-transforms, realized
by Equations (2.2) also to functions not belonging to L, and L, .; for
example, functions integrable (by corresonding measure) and of bounded vari-
ation on any finite interval. Thus, in this case when P (E)u (€, n) éE.Lzﬂ,
Ho(x, n) may be considered as & generalized function, the ¢-transform of
which has the form b

BHo(l M (E z)ds(5) =pE)uE, ) (2.6)
Comparing (2.4) with (2.6), we obtain
o) = 15 s @—m + [§ ™2 TS @7

where 6(x — n) is a delta function; ¢’(n) in the general case is understood
as a generalized function. On thebother hand, from (2.5) and (2.2) we have

p (B9 ) = | Hol, muE mds (n) (2.8)
b

oG =p"OpEa+{HmDuEndm] @9

P
Substitu@}ng now into (2.5) the function o(f, x), from (2.3) we get

Hence

¥o(n, ) + K (2 1) Fo(n, m) ds () = 15" (12 8 e — ) + {0 S
h “ - (2.10)
where
¥o(n,2) = | 0 ®)u @ uE 2 dr) (2.11)
As a consequence of (2.2)

Ve ouEnde@ =" mse—n) (2.42)

therefore, 1ntr3§bc1ng the new function
¥ (o) = | hE)uE )@ o)dE) (213)

from (2.10) for values of x > nm of interest to us, we obtaein

x
¥ (n,2)+ K @) ¥ () ds(m) + K(z,m) =0 (2.14)
a
The kernel v¥(n, n,) of the integral equation (2.14) may be expressed by
means of the orthogonalizetion kernel p#(x, n) . Using expressions (2.%)
and (2.5) in (2.13) (when x > n ), we find

) FO—te@aund @)~ \eEuE w[r@ )+

40 6 m) 0 mdds ()| de6) — (5" (01720 o ) = o ) +

n
+S (2, M) Ho (M, m) ds (m)— [5" ()] 8 (z—n) (2.15)
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Taking into consideration (2.7), we may now write
L]

¥n,2) = Sﬂ(x, m) {[s" (I8 (n— ) + H (n, m)}ds (1) (2.16)

a4

¥, z)=H(z,m) +

Hence

H (z, 1) H (, m) ds (m1) (2.17)

L 3 g )

It follows from (2.17) that ¥(n, x) 1s continuous, so long as the kernel
R(x, n) 18 continuous. Thus, for every fixed x , Equation (2.14) is a
linear Fredholm integral equation of the second kind with continuous, sym-
metrical kernel Y(n, x) . This equation, just as the nonlinear integral equation
(2.17) with respect to the orthogonalization kernel g(x, v) is analogous
to the integral equation studied in detall in [22 and 23]. In our case these
equations, although belng of a rather more general character, are essentially
little different from considerations in [22 and 23], therefore, using the
close analogy between them, it is not difficudlt to prove solvability of Equa-
tion (2.14).

We shall prove first that if f () & L, 1s some finite function and
b

@) =\fmuE ndsm)
a
i1s its y~-transform, then from the equality

\ © ()6 @) drt) = 0 (2.18)
1t necessarily follows tha:KLImost everywhere ®(g) = 0, 1.e. #(n) = 0 . We
have b b

p(5)® (8) = {7 (nydo () { Ho (1, 1) @ (&, ) dos (m) —
b

= §(P (8 ma) [ £ (m) + S H (1, ) f (n) do (n)]do (n) (2.19)

N
Since

[f(nn) +§ H (n, m) / () do (n) ]E Ly

LU
then, using Parseval's equality for g-transform, realized by Equation (2.2)

\ PR dv (@) =\ @) ds )
we find e b : .
{ o &) 0 @ 5 8) = {[7 () + | 2, m) 7 (s ()] o ) 2:20)

Thus, on account of (2.18)

Jm)+\ H(mym) f(m)ds (n) =0 (2.21)

SC O

=
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Equation (2.21) represents a regular (f{n) is finite) Volterra equation
relative to p{n,) , which may have only the trivial solution p{n, ) = 0,
It follows that o) = 0 ,

To prove that the only solution is Equation (2.1%) for every particular
X , 1t 1s sufficient that the homogeneous equation

() + \F (. m) P (n)ds(n) =0 (2.22)

has only a trivial sclution. We suppose that there exists a function
v(n,) ¥ O satisfying Equation (2.22)., 8ubstituting in(2.22), instead of
%#(n, n,) 1ts value from {2.13) and changing the order of integration, we get

[ETH

{0t @y u & m de (&) {9 () u & mhdo () = 0 (2.23)

Let §,(n) be a finite function
P (7]) — {g’("l) (an<2)

™ (> =)
en o b
§or @ u @ m v () (i mu @ mds(m) =0 (2.24)
62 @1 (6) 8 (6, m) o 2) = O (2.25)

where ¢, is a y-transform of function y,(n) . Multiplying the left and
right-hand sides of {2.25) by y,{n,) and integ-ating with measure o(n,)
from g to b, we obtatg

(@@ @) drE =0 (2.26)

Hence, by virtue of (3738) and of 1ts consequence, it must be ¢{(n) % 0,
which contradicts our assumption. Thus Equation (2,22) has only the trivial
solution, consequently, integral equation (2.1%) as a unique solution
x{x, n) . Having determined x(x, n) from Equation (2.14) by some well-known
method, using Equation (2.3), we find the function o(Z, x) and then from
(2.5) we shall find the second orthogonalization kernel #,(x, n) .

Thus, integral operators related to kernels x(x, n) and g(x, 1) allow
one to realize the orthogonalization of functione o{f)u(f, n) and g(2lu(e,n)
whereby, what is very important, Integration is carried out in limits of each
of the 1intervals, on which dual equations (2.1) are specified. This ortho-
gonallization gives the possibllity to reduce dusl equations to a single inte~
gral equation, the solution of which at once follows from the inversion for-
mula. Multiplying both sides of the first equation (2.1) by

Ko(z,m) = [ ()18 @—m) + {77 (OS2

and both sides of the second by y,{x, n) and integrating with measure o(n)
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from g to » , we obtain
K; (1 () (e < e e) .
By =1} 2.2
S J€)@E 2)dT(3) {Gg(r) (¢ < v < b) (2.27)

A (+«,m) &1 (n)ds (M),

H x) g2 (n) ds (M)

Inverting (2.27), we find the soclution of dual integral equations (2.1)

in the form b

F(E) = SGI ) ds (z) -+ SGz(x)q)(g,x)ds(:c) (2.28)
3. In the case of dual series

N ontataM =01  (a<n<o)

n=o

o (3.1)
2 pn-ljnun (T]) rn =£2 (Tl) (6 < n < b)

the method of solution 1s not difrerent t‘rom that given in the previous Sec-
tion. As was already noted, series may be considered, as a particular
case of dual equations (2.1), when ?g) is represented by step functions.
Thus we at once write the solution to dual series (3.1) in the form

o= S[u (z)+SK(x m) e (1) d () | [gl(z)+SK<x ) g2 (1) do ()] do ) +

+§[u (=) + S K (2, ) () s ()| (x)+bS H, 2)gs(n)ds(m)|ds @) (3:2)
¢ x

Here ov
HMy 2)= ) ppity (M) @y (2) T, — [6" (]2 8 (z — m)
n=0Q
and x(x, n) is a solution to the integral equation (2.14) for
¥ (n, )= 2 [Pn2— 1] 4y (2) u, () 7y, (3.3)

For this, obviously, 1t is supposed that u,(x) is a system of functions,

?rtho onal with weight o’(x) and a normalized value of 1, on the interval
a, b

4. The proposed method may be used to solve also systems of dual integral

equations. Let, for example, the given system be
oo

\ @) 12 (8) + onfa (BN = (& M e (B) = & ()

-0

o (aln<e) (41.1)
\ 0®) 12 (8) + Bura (9] w (& Wy dv () = g5 ()

—c0
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\ 07 () 12 (8) + o/ (B)] 2 (5, m) v (B) = 2 (n)

-C0
(o]

\ 07 E) 1B+ Baa B

(c<n<b) (4.1.2)
Nu(E n)drE) =g

Multiplying the left and right-hand sides of (4.1.1) by x,(x, n) and
(#.1.2) by #o{x, n) and integrating with respect to measure ofn) , we get

§)+aife (B) @8, 2)dT (B) = Gi(2)

(a<z<e)  (4.2.4)
/1 (B) +B/a (B)l @ (§, 2} de (§) = Gs (2)

[fl () + /2 (B) @ (§, ) dv () = Ga (x)

¢4/“8 ge—8 ge—38 é“”

(ce<z<b) (422)
fx (&) + Bof2 B @ (B, #) AT (B) = Gy ()

We denote

Fa(e) = \ n®o® 2)d1(E) (=12
then from (4.2.1) we have
Gs G Gy (r) — Gy (z)
Fi(z )_%ﬁ F,(x)z_!_(&’:l—__-_—ﬁz-i (s<z<e) (4.3.1)
and from (4,.,2,2)
—_ Ga(2) — Ge (=
Fi(e) = HBO 000 py ) BE—al ccacn (432)
Transforming (4.3), we find the solution to the system (4.1)
K@) = g | 16 (@) =BGy (@) @ (8, 2)do(2) +
@

(4.4)
b

+ E-_l__—g [23Ga (2) — BaGa ()] @ (8, 7) do (2)

J2(8) =

e 3[61(w>~cs(x)w<g, 2)do (z) + “s)
tah S (61 (2) — Gu (@)@ (&, 2) ds (2)
’o

The results obtained above relate to dual integral equations with
orthogonal kernels, for which Equations (2.2) are valid, ensuring the exist-
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ence of integral equation (2.1%) for the determination of the orthogonaliza-
tion kernel. However, carrying out the orthogonalization and obtaining inte-
gral equation of the type (2.14%) 1s possible alsc in the more general case,
namely for all those equations, which on the interval (g, ») allow inversion.
For Equations (1.1), and mlso, for example, for dual equations of a more

general type
§zi+h<§)w<§>a<§,n)du&)zgl(n) (@a<n<e)
{1

i (5.1)
> VE) uE MdrE) =g(M)  (c<n<h)
{L)

where (1) is a certaln contour in the complex plane, the solution by the
proposed method may be obtained in those cases, when for Equation

V/@uE @ =gm  @<n<y (5.2)

(L)
there 18 known the inversion formula

1@® =S emoE mdsm) (5.3)

Relations (5.2) and (5.3) hold for integral transforms with nonsymmetrical
kernels and in particular for expansions into eigenfunctions of nonself-
adjoint differential operators and also in certain speclal cases. For exam-
ple, 1t 18 known [ 3] that for certain conditions integral equations with a
kernel, depending upon product arguments

S F (&) ky (Ex) dE = f(2) (0 < z< o0) (5.4)
have a solution
F &) = £ (@) ke (E2) da (5.5)
[
¥-}-ioo - [
ke (52) = 5 WS R s (K= —-S h@sd)  (5.6)

Here X,{1 — &) denoctes a Mellin transform of the function ¥, (x)

Analogous relations are easily established also for the egquatlons given
along the whole axis, with kernels depending on the difference or sum of the
arguments o

S F(E)ki(z £ E)dE = f(x) (5.7)
The inverse equatlion has the form
F )= § Pk (@t By ds (ke 3=y S %&P,Ekz‘lq_(é.;é;;)} w) o (5.8)

Here k,*(p) 1s the Fourler transform of the function i, {x) .
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Substituting (5.3) into (5.2) and conversely, we find

o () § w @ mo & n)deE =8 (—m),

(L)
b

&) Su v, mdsm) =3¢ —t) (5.9)
Orthogonalizing kernéis ¥{x, n) and F(x, n) are found from the relations
07 (5) 9 (5, ) = u(E, 2) + \ K (z, W)z (&, mdo(n) (5.10)
b
p(E) 9 ) =u(E 2)+  H(n, 2)u(E, n)ds(n) (5.11)

x

Here, as avove, p (E) = V1 + A (E). Multiplying (5.11) by wv(e, m,) and
integrating with respect to 1(£) along the contour (1) , we find

Sp(gw(g,x)v(a,m)dr(g):”";,(—,,j;—"+{’”"1' D E<m (5 49)
48 0 (x>m)

Using now (5.,10), we find for x > n;
x

V(2 )+ § K@ ) ¥o(m n)ds(m) + K (2, 1) =0 (5.13)

a

Wiz, m) = { A@uE, 20 € n)de @) (5.14)
(L)

6. In individual cases one may be able to reallze orthogonalization and
to determine the orthogonalization kernels without the solution of integral
equations (2,14) or (5.13). 1If, proceeding from some consideration, one may
predict the form of function ¢z§, x), then kernel g,(x, n) is determined
by Equation

where

Koo, = § 57 ©)9 2 20 ¢ M dr (@ (6.0
(L)

obtained by means of the inversion of (5.10) and the kernel #,(x, n) by
Equation

?

Hyte =\ 0 )92, 2) 2 (5, Wae @ (6.2
)

Analogous relations occur for kernels #,(x, n) and #,(x, n) in the case
of dual equaticns (2.1).

T. As an illustration, we consider the plane contact problem in the
theory of elasticity for an infinite wedge 1n polar coordinates, Let the
end of the wedge, the angle of which equals 2y , on section O < r <1 be
pressed without friction by symmetrical rigid stamps, so that boundary con-
ditlons for the problem have the following form:

plr fa) =g (0K r<)
oo(r, o) =0  (1<r<o) (7.4)
tln L) =0  (0<r< o)

As 1s known, the problems of a wedge are successfully solved by the help
of Mellin transforms. Introducing Mellin transforms o,*, gy*, 7,,* for stresses
U,'UoL!Trs, and supposing that the stresses are of order ;™% €y 1) for r==
and r " (gg<{1) for r - O, from the equations of equilibrium and the
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condition of continuity one may.obtain ordinary differential equations of
the fourth order with respect to 0,%, the solution of which has the form [ 24]

Oy* =A cos{(p+1)8+Bcos(p—1)8- Csin{p-+ 1)8 4+ Dsin(p — 1)8 (.2)
where .
‘_.‘L(l [ ) » 1 .

S =5 \p—1 % | Troy= p 100 (7.3)
Here p(&g—1<Rep<e — 1) 1s a complex parameter in the Mellin
transform. From symmetry conditions of the stresses relative to s = 0 it
follows that ¢ = D = O . Using {7.3) and the last condition in (7.1), we

find in addition .
(p+1)sin(p+1)a

B(p)=—A4(p) (p—1)sin(p—1)a (74)
Since (for generalized plane state of stress)
1 oo 8 L]
r ?
u=—E—S (o, — vog) dr, v :'E"S{Ga—%r) dﬁ-—SudG {1.5)
r 0 0

where \ 18 Poisson's coefficient, then using (7.2) and (7.3) we obtain,
after conversion of transforms 0g* and 0,* in accordance with (7.1), the
following dual integral equation with respect to the function 4,({p)

! )% L { Ap)dp
m(&m(p)p(m;ﬁz_zgm (0(r<i),m(§}—r—:,)m=o (L <r < oo)
2[(P*+p+v—1Dsin(p+ e
AP=ADROAD, =" EEI NPT D

(p+ 1)sin(p4-1)a (7.6)

fo(p) Ve
plp)= hip) ! fl(P)=[COS(P+1)¢— (p—1)sin (p— 1)a COS(P_i)a]
Here (1} 1s a vertical straight line inside the strip (c,— 1 < Re p<e,~1).

For solution of dual equations {7.6) one should find the orthogenalization
kernel x{x, r) from Equation

x

W (2, r) -+ S K (z, 1) ¥ (ry ) dry - K (2, 7) =0 .7
where ¢
1
V(o) =g § 182D — 11 2PrP 1 ap (7.8
(L)

After the determination of kernel x{x, r) from (7.7) the solution of dual
Equations (7.6) is written in the form

Ay (p) = — Ep (p) i [xp-l + § K (z, z) 2P d.z-;] [g, (=) + §K (=, r) g (r) dr} dr {7.9)
1] [+] 9

and the stresses may be determined with the aid of the Mellin inversion
formulas from {(7.2) and (7.3).
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